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Problem Set 2
Optical Waveguides and Fibers (OWF)
will be discussed in the tutorial on November 11, 2015

Exercise 1: Dispersion of fused silica (amorphous SiO2)

The refractive indices of dielectric materials can be written in functional form by means of the Sellmeier
equations. For fused silica, the most common material used for fabricating optical fibers, the Sellmeier
equation takes the following form:

n2 (λ) = 1 +
0.6962λ2

λ2 − (0.06840)2
+

0.4079λ2

λ2 − (0.1162)2
+

0.8975λ2

λ2 − (9.8962)2
. (1)

The quantity λ denotes the vacuum wavelength in micrometers.

a) Generate a computer plot, e.g., using MATLAB, that shows the refractive index of fused silica as a
function of wavelength. Eq. (1) is valid between 0.2µm and 3.7µm, i.e., from the ultraviolet region
to the near infrared.

Hint: MATLAB can be accessed from any computer at the SCC. For home use, a licence can be
downloaded by any student via the SCC: http://www.scc.kit.edu/produkte/3841.php.

b) Consider a pulse of light with center wavelength λ propagating over 1 km through bulk fused silica.
Plot the arrival time as a function of λ.

c) Short pulses have broad spectra, i.e., they consist of various different wavelength components.
Which center wavelength would you choose to transmit a short pulse through bulk fused silica with
minimum impairment?

d) Plot the material dispersion coefficient Mλ as a function of wavelength on a scale having the units
ps

km nm , which are the most common units for this quantity.

Exercise 2: Spreading of a Gaussian pulse as it propagates in a dispersive

medium.

Consider a pulse which is propagating along the z direction within a material having material dispersion
Mλ at the carrier angular frequency ωc. Assume that at z = 0 the pulse is described by:

a(z = 0, t) = A0e
−

t2

2σ2
t
(0) ejωct (2)

a) Calculate a(z, t) for z > 0. To do so, you can proceed in the following way:

• Calculate the Fourier transform of the pulse.

• Assume a complex propagator of the form e−jβ(ω)z. Use the Taylor expansion up to second

order to approximate the propagation constant, i.e., β(ω) = βc+β
(1)
c (ω−ωc)+

1
2β

(2)
c (ω−ωc)

2.

• Perform the inverse Fourier transform. Hint: Introduce the quantity σ2
t (z) = σ2

t (0) + jβ
(2)
c z

b) Show that the pulse remains Gaussian and that

|a(z, t)| ∝ e
−

(t−β
(1)
c z)

2

2σ2
t
(z) , (3)

where

σ2
t (z) = σ2

t (0) +

(

β
(2)
c z

)2

σ2
t (0)

. (4)

c) How do β
(0)
c , β

(1)
c and β

(2)
c influence the optical signal?
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Note 1: Fourier transform convention

Remember that in this course we use the following definition of the Fourier transform.

F
[

f(t)
]

= f̃(ω) =

ˆ +∞

−∞

f(t)e−jωtdt (5)

The latter equation implies that the inverse transform is:

F−1
[

f̃(ω)
]

= f(t) =
1

2π

ˆ +∞

−∞

f̃(ω)ejωtdω (6)

Note 2: Fourier transform of the Gaussian function

According to the previous definition:

F
[

e−
t2

2σ2

]

=
√
2πσe−

σ2ω2

2 , for Re

[

1

σ2
> 0

]

. (7)

Note 3: Relation between the Taylor expansion of β(ω) and the material dispersion Mλ

The definition of the material dispersion coefficient Mλ is:

Mλ =
∆tg

z∆λ
. (8)

This relation can be easily remembered when recalling the previously introduced dimension, ps
km nm : Mλ

gives the group delay spread ∆tg in ps between two wavepackets for which the center wavelengths are
separated by ∆λ = 1nm after a propagation distance of z = 1km.

A useful relation between Mλ and β
(2)
c can be obtained when using

tg ≡ z

vg
= zβ(1)

c , (9)

in Eq. (8)

Mλ =
dβ

(1)
c

dλ
= −ω

λ

dβ
(1)
c

dω
= −2πc

λ2
β(2)
c . (10)
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